Microstructurally-based homogenization of electromagnetic properties of periodic media

نویسندگان

  • Alireza V. Amirkhizi
  • Sia Nemat-Nasser
چکیده

A general method for homogenization of the electromagnetic properties of a heterogeneous periodic medium is developed, based on its microstructure. This method is inspired by micromechanics (Nemat-Nasser and Hori, 1999). Contrary to other conventional techniques, commonly used in electromagnetism to calculate the overall properties of composites, this microstructurally-based method does not require an explicit numerical solution of the Maxwell equations. We define the macroscopic field quantities as volume averages of the spatially variable fields, taken over a representative volume element (RVE), consisting of a unit cell of the periodic medium (Hill, 1963; Willis, 1981; Hashin, 1983; Nemat-Nasser, 1986). The boundary conditions are based on the Bloch representation of wave propagation in the heterogeneous media. Instead of explicitly solving the Maxwell equations, these equations are directly used in the averaging scheme. This distinguishes our method from others, where usually a known point-wise solution is used to obtain the average field quantities. The resulting constitutive relations therefore may be used to directly estimate the response of any heterogeneous periodic assembly of material constituents of given geometry and properties. To cite this article: A.V. Amirkhizi, S. Nemat-Nasser, C. R. Mecanique 336 (2008). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé Homogénéisation des propriétés électromagnétiques des milieux périodiques fondée sur une base microstructurelle. On développe une méthode générale d’homogénéisation des propriétés électromagnétiques des milieux périodiques hétérogènes fondée sur une base microstructurelle. Cette méthode est inspirée de la micromécanique (Nemat-Nasser and Hori, 1999). Contrairement à d’autres techniques conventionnelles, couramment utilisées en électromagnétisme pour calculer les propriétés globales des composites, cette méthode à base microstructurelle ne nécessite pas de solution numérique explicite des équations de Maxwell. Nous définissons les champs macroscopiques comme des moyennes volumiques des champs spatialement variables sur un volume représentatif élémentaire (VRE), qui consiste en une cellule de base du milieu périodique (Hill, 1963 ; Willis, 1981 ; Hashin, 1983 ; Nemat-Nasser, 1986). Les conditions aux limites reposent sur la représentation de Bloch de la propagation d’ondes dans le milieu hétérogène. Au lieu de résoudre explicitement les équations de Maxwell, ces équations sont directement utilisées dans l’opération de moyenne. Ceci distingue notre méthode d’autres qui utilisent généralement une solution connue point par point pour obtenir les champs moyens. Les équations constitutives résultantes peuvent par conséquent être utilisées pour estimer directement la réponse d’un assemblage périodique hétérogène de constituants matériels de géométrie et de propriétés données. Pour citer cet article : A.V. Amirkhizi, S. Nemat-Nasser, C. R. Mecanique 336 (2008). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation of electromagnetic waves in non- homogeneous media

We consider electromagnetic waves propagating in a periodic medium characterized by two small scales. We perform the corresponding homogenization process, relying on the modelling by Maxwell’s partial differential equations. Key wordsMaxwell’s equations, Homogenization, two-scale convergence, oscillating test functions. (MSC)-2000: 35Q60, 35B27 [email protected] hassan.taha@labo...

متن کامل

Mystery of the double limit in homogenization of finitely or perfectly conducting periodic structures.

We show that the difference in the effective medium properties of perfectly or finitely conducting short-period gratings is because for finitely conducting gratings it is possible to completely homogenize the electromagnetic field vector components, contrary to perfectly conducting gratings. As a consequence, for aluminum in the microwave domain, two possible effective media can be found, depen...

متن کامل

Non-periodic Homogenization of the Elastic Wave Equation for Wave Propagations in Complex Media

When considering numerical acoustic or elastic wave propagation in media containing small heterogeneities with respect to the minimum wavelength of the wavefield, being able to upscale physical properties (or homogenize them) is valuable, for mainly two reasons: first, replacing the original discontinuous and very heterogeneous media by a smooth and more simple one, is a judicious alternative t...

متن کامل

Smart Systems Obtained by Homogenization Technique

In this talk 1 we present some conceptual and numerical tools based on the homogenization theory as a starting point in the design of three “new materials” or “smart system”. Metamaterials [1]. We study the behavior of the electromagnetic field of a medium presenting periodic microstructures made of bianisotropic material and we rigorously justify the limiting homogeneous constitutive law both ...

متن کامل

Homogenization of the Schrodinger equation with a time oscillating potential

We study the homogenization of a Schrödinger equation in a periodic medium with a time dependent potential. This is a model for semiconductors excited by an external electromagnetic wave. We prove that, for a suitable choice of oscillating (both in time and space) potential, one can partially transfer electrons from one Bloch band to another. This justifies the famous ”Fermi golden rule” for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008